A polynomial-time approximation scheme for single-machine sequencing with delivery times and sequence-independent batch set-up times

1998 ◽  
Vol 1 (2) ◽  
pp. 79-87 ◽  
Author(s):  
Gerhard J. Woeginger
2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Juan Zou ◽  
Yuzhong Zhang

We consider the problems of scheduling deteriorating jobs with release dates on a single machine (parallel machines) and jobs can be rejected by paying penalties. The processing time of a job is a simple linear increasing function of its starting time. For a single machine model, the objective is to minimize the maximum lateness of the accepted jobs plus the total penalty of the rejected jobs. We show that the problem is NP-hard in the strong sense and presents a fully polynomial time approximation scheme to solve it when all jobs have agreeable release dates and due dates. For parallel-machine model, the objective is to minimize the maximum delivery completion time of the accepted jobs plus the total penalty of the rejected jobs. When the jobs have identical release dates, we first propose a fully polynomial time approximation scheme to solve it. Then, we present a heuristic algorithm for the case where all jobs have to be accepted and evaluate its efficiency by computational experiments.


Sign in / Sign up

Export Citation Format

Share Document